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Abstract

The allocation of die area to different processor components is
a central issue in the design of single-chip microprocessors. Chip
area is occupied by both core execution logic, such as ALU and
FPU datapaths, and memory structures, such as caches, TLBs,
and write buffers. This work focuses on the allocation of die area
to memory structures through a cost/benefit analysis. The cost of
memory structures with different sizes and associativities is esti-
mated by using an established area model for on-chip memory.
The performance benefits of selecting a given structure are mea-
sured through a collection of methods including on-the-fly hard-
ware monitoring, trace-driven simulation and kernel-based
analysis. Special consideration is given to operating systems that
support multiple application programming interfaces (APIs), a
software trend that substantially affects on-chip memory alloca-
tion decisions.

Results: Small adjustments in cache and TLB design parame-
ters can significantly impact overall performance. Operating sys-
tems that support multiple APIs, such as Mach 3.0, increase the
relative importance of on-chip instruction caches and TLBs when
compared against single-API systems such as Ultrix.

Keywords: On-chip Memory, Cache, TLB, Multiple-API Oper-
ating System, Mach

1 Introduction

Improvements in integrated-circuit processing technology over
the past decade have enabled the inclusion of on-chip memory
structures in microprocessor designs. Current microprocessors
typically dedicate about half of their chip area to memory struc-
tures such as TLBs, write buffers, and caches [MReport92,
MReport93].

While numerous studies have demonstrated the effectiveness
of caches and TLBs in improving performance, these structures
are costly because they quickly consume the scarce resource of
chip area. As a result, on-chip caches tend to be rather small (4- to
16-Kbytes). Deciding how much die area to allocate to on-chip
memory structures is a complex problem because there are many
competing approaches to improving system performance, includ-
ing multiple-issue CPU cores, floating-point units, sophisticated
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instruction- and data-prefetching units, etc. Additionally, because
on-chip memories are relatively small, minor adjustments to
design parameters can have a major impact on overall perfor-
mance.

Although designers consider on-chip memory to be important
enough that they will allocate as much as half of a chip’s area to
these structures, there seems to be little consensus as to how the
area should be divided between I-caches, D-caches and TLBs
(See Table 1). While some designs have equal-sized I- and
D-caches, others allocate more space to either the I-cache or the
D-cache and still others implement a unified cache. Similarly,
TLB sizes range from 32 to 384 entries. Cache line size and asso-
ciativity can also affect the size (and speed) of on-chip memory
structures, but again, there is great variation among existing
microprocessor designs in the selection of these parameters.

Memory allocation decisions should consider expected work-
loads for the processor as well as recent trends in operating sys-
tems. For example, many new operating systems, such as Mach
3.0 and Windows NT, support multiple application programming
interfaces (APIs).! These systems, which typically implement API
servers in separate address spaces and have a long execution path
from the service invocation point to the actual service routines,
are likely to depend more on TLBs and I-caches [Anderson91].

This paper explores the problem of on-chip memory allocation
through a cost/benefit analysis. We use an area model for on-chip
memories developed by Mulder, Quach and Flynn (MQF) to esti-
mate the cost (area) of memory structures with various sizes and
associativities [Mulder91]. To determine the performance benefit
of different memory structures, we employ a collection of analysis
tools including hardware-based monitors, trace-driven simulators
and kernel-based simulators. We consider two different operating
systems, Mach 3.0 and Ultrix, and a collection of applications that
rely heavily on operating system services. Once the costs and ben-
efits of different memory structures are determined, we suggest
guidelines for the allocation of on-chip memory depending on the
type of applications and operating systems that a processor is
expected to support.

The remainder of this paper is organized as follows: Section 2
examines related work. Section 3 briefly describes our analysis
tools. A discussion of the impact of the operating system on chip-
area allocation decisions is included in Section 4. Cost and perfor-
mance analyses, along with recommendations for chip-area allo-

1. 4.3 BSD, POSIX, VMS, MS-DOS, Windows or Macintosh OS, etc.



Die Size I-cache D-cache TLB
Processor (mm?) (size, assoc, line) (size, assoc, line) (size, assoc)
Intel i486DX 81 8-KB  4-way (unified) 32-U 4-way
Cyrix 486DX 148 8-KB  4-way 4-word (unified) 32-U A-way
Intel Pentium 296 8-KB  2-way 8-word 8KB 2-way 8-word 32| 64-D 4-way
DEC 21064 (Alpha) 234 8KB 1-way 8-word 8KB 1-way B-word 32 12-D full
Hitachi HARP-1 (PA-RISC) 264 8-KB  1-way 8-word 16-KB  1-way 8-word 128-1  128-D 1-way
PowerPC 601 121 32-KB  8-way 16-word (unified) 256-U 2-way
MIPS R4000 184 8-KB  t-way 8-word 8-KB  1-way B-word 96-U full
MIPS R4200 81 16-KB  1-way 8-word 8-KB  1-way 4-word 64-U fuil
MiIPS R4400 184 16-KB  1-way  8-word 16-KB  1-way 8-word 96-U full
MIPS TFP 208 16-KB  1-way 8-word 16-KB  f-way 8-word 384-U 3-way
SuperSPARC (Viking) — 20-KB  5-way 16-word 16-KB  4-way  8-word 64-U full
MicroSPARC 225 4KB  1-way 8-word 2-KB  1-way 4-word 32-U full
TeraSPARC — 4-KB  1-way 8-word 4-KB  1-way 8-word —— B ——

Table 1: On-chip Memory in Current-generation Microprocessors

Typical parameters for current on-chip memory structures. These data were collected from a variety of processor data books and issues of Microprocessor
Report during the past two years [MReport 92, MReport93]. Throughout this paper we report line sizes in 4-byte words.

cation are in Section 3. Section 6 presents conclusions and
suggests future work.

2 Related Work

The idea of building microprocessors with on-chip cache
memories dates back to at least a decade ago, when VLSI
advances began to enable such designs [Patterson80]. Subse-
quently, in two separate studies, Goodman and Hill & Smith dem-
onstrated the effectiveness of small on-chip cache memories and
argued that future processor designs should allocate some portion
of die area to these structures in favor of developing more com-
plex CPU datapaths [Goodman§3, Hill84]. This work has been
followed by numerous studies of on-chip memory structures,
sometimes in conjunction with off-chip, second-level caches
[Goodman86, Eickemeyer88, Alpert88, Short88, Przybylskig9,
Olukotun91, Farrens89]. The common conclusion of these papers
is that on-chip memory structures are essential to minimizing off-
chip memory accesses which, in turn, enables the low cycle times
of modern processors.

Early studies used simple models of on-chip memory area
costs, or neglect this factor entirely. The MQF model is more
accurate. It takes into account data bits, tag bits and overhead
logic (drivers, comparators and control), as well as different types
of memory cells (dynamic versus static). This model has been
shown to predict area within 10%! by comparing it against several
existing on-chip memory implementations. We use the MQF
model in this paper.

Many of the studies cited above fail to consider operating sys-
tem references. Other work has shown that this can lead to over-
optimistic predictions of miss and traffic ratios [Clark85a,
Clark85b, Agarwal88, Torrellas92]. At the same time, operating
systems are changing. OS researchers have argued that trends,

1. Earlier models were shown to be inaccurate by a factor of 2 or more.
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such as support for multiple APIs, places additional pressure on
existing hardware structures [Anderson91, Ousterhout89]. These
claims are supported by recent work reporting that cache and TLB
misses are substantially higher for new-generation operating sys-
temns like Mach 3.0 [Huck93, Chen93, Nagle93].

This paper extends previous work in several ways. We revise
previous studies of on-chip memories in the context of present-
day VLSI technology and through the use of the improved MQF
chip-area model. We consider I-caches, D-caches and TLBs
simuitaneously under the same area constraints to develop spe-
cific recommendations for the amount of chip space that should be
allocated to each structure. Finally, we consider the impact of
operating systems and give special attention to the support of mul-
tiple APIs.

3 Experimental Methodology

Because different architectural analysis tools each have their
strengths and weaknesses, we employ three complementary
approaches:

*  On-the-fly Hardware Monitoring
*  Trace-driven Simulation
*  Kemel-based Simulation

We use hardware monitoring to identify general trends of
behavior among the operating systems and workloads that we
considered. A DAS 9200 logic analyzer was connected to an
R2000-based DECstation 3100 running the Ultrix and Mach oper-
ating systems. The logic analyzer was programmed to detect and
count the different causes for processor stalls, such as I- and
D-cache misses, TLB misses, write-buffer stalls, floating-point
unit stalls, etc. The advantage of this method is that it non-inva-
sively measures actual system activity without the error that usu-
ally accompanies simulation or analytical modeling due to
incomplete assumptions about system operation. This system,
which we call Monster, is described more completely in
[Nagle92].



Because hardware monitoring is unable to explore alternative
design parameters, we also use trace-driven architectural simula-
tion. We use trace sampling, a method that other researchers have
shown to be accurate for cache simulation if two conditions are
met:

* A sufficient number of samples, representative of the
entire workload, must be collected. Each sample is-used
to obtain an estimator of the miss ratio during a given
segment of the workload. Laha et al. report that 35 sam-
ples are usually sufficient to characterize a workload
[L.aha88], although other researchers report that some
workloads (especially those with low miss ratios) may
require as many as 100 samples to bring relative error to
under 10% [Martonosi93].

* Samples must be long enough to prime the cache so that
references will be known to hit or miss. This problem,
which is most severe with simulations of large caches,
is commonly referred to as cold-start bias and can intro-
duce error in miss ratio estimators [Kessler91].

Our method satisfies both requirements. Monster was used to
collect trace samples over random intervals of workload execu-
tion.! Fifty samples of 120- to 200-thousand references apiece
were collected for each workload under both operating systems.
The sample traces include multiprogramming and operating sys-
tem references and total about 200 million references in all.
Because we only consider small on-chip caches, cold-start bias is
quickl)zl removed by the length of samples used. Simulation
results” using these trace samples were validated against on-the-
fly hardware monitoring measurements by using cache parameters
identical to those of the DECstation 3100 and by simulation using
complete address traces. Error was found to be under 10%.

We aiso use a third approach, called kemel-based simulation,
where architectural simulators are compiled into the kernel of an
operating system and are active during system operation. For
example, in a system with software-managed TLBs, all TLB
misses trap into the operating system kernel. By modifying the
kernel to pass these TLB miss events to a TLB simulator, it is pos-
sible to simulate alternative TLB configuratisns. Our kernel-based
simulator, called Tapeworm, is described more completely in
[Uhlig93]. Extensions to this basic technique are used to simulate
instruction and data caches [Uhlig94]. Kernel-based simulation is
an attractive compliment to trace-driven simulation because it is
significantly faster, though less flexible.? Tapeworm’s speed
makes it possible to obtain performance figures without resorting
to sampling. Kernel-based simulation results were compared
against those obtained through trace-driven simulation to give an
added measure of confidence to our results.

Throughout the paper we use the benchmarks listed in Table 2.
The same benchmark binaries were run under both the Ultrix and
Mach operating systems and all idle loop activity was removed
from the experiments. This workload suite was chosen because it

1. Monster connects to the system at the CPU package pins. Because
caches are implemented off-chip in the R2000, this method captures all
memory references, not just those that miss the cache.

2. We use the cache2000 and Cheetah cache simulators [MIPS88,
Sugumar93].

3. Our kemel-based TLB simulator can process memory references at a
rate of over 6 million references / sec. A comparable trace-driven sim-
ulator processes at a rate of 20 to 150 thousand references / sec. On the
other hand, our kemel-based cache simulator design restricts selection
of line sizes and write policies.
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Benchmark Description
I0zone A sequential file I/O benchmark that writes and then
reads a 10 Megabyte file. Written by Bill Norcott.
jpeg_play The xloadimage program written by Jim Frost. Dis-
plays four JPEG images.
mab John Ousterhout's Modified Andrew Benchmark
[Ousterhout8g].
mpeg_play mpeg_play V2.0 from the Berkeley Plateau Research
Group. Displays 610 frames from a compressed video
file [Patel92].
ousterhout John Qusterhout's benchmark suite from
{Ousterhout8g].
video_play Amodified version of mpeg_play that displays 610
frames from an uncompressed video file.
Operating
System Description
Ultrix Version 3.1 from Digital Equipment Corporation,
Mach Camegie Mellon University's version mk77 of the ker-
nel and version uk38 of the 4.3 BSD UNIX server.

Table 2: Benchmarks and Operating Systems

Benchmarks were compiled with the Ultrix MIPS C compiler version 2.1
(level 2 optimization}. Inputs were tuned so that sach benchmark takes
approximately the same amount of time to run {100-200 seconds under
Mach).

relies significantly on operating system services and emphasizes
digital media applications.

4 The Effect of Multiple-APIs on

Memeory Allocation Decisions

Many recent operating systems (e.g., Mach [Accetta86], V
[Cheriton84], Chorus [Rozier92}], KeyKOS [Bomberger92], Win-
dows NT [Custer93]) have been designed to support multiple
APIs. For example, there currently exist servers for 4.3 BSD
UNIX, MS-DOS, Macintosh OS and VMS that run on the Mach
3.0 microkernel [Black92, Malan91, Wiecek92]. These API ser-
vices are typically implemented in one or more user-level pro-
grams and invoked through a remote procedure call (RPC)
interface. Figure I depicts this situation for Mach, alongside the
more traditional structure of a single-API system like Ultrix in
which OS services reside mostly in the kernel.

To see why these OS trends might affect on-chip memory allo-
cation decisions, consider Table 3 which shows three collections
of cycle-per-instruction (CPI) measurements for mpeg_play ona
machine with off-chip caches. The measurements in the first row
do not include OS references, but the last two give CPI and stall
breakdowns when Ultrix or Mach system code is included in the
measurement.

The results of Row 1 in Table 3 would lead a chip designer to
focus primarily on the write buffer and execution units, because
the simulation indicates that these CPU components contribute to
over 70% of all stall cycles. However, when OS effects are con-
sidered, the situation changes. An Ultrix-based system exhibits
higher overall CPI and the relative importance of the I-cache, and
especially the D-cache increases. A Mach-based system has an



X Display
Service

mpeg_play
(User Task)

BSD UNIX Services:

¢ Inter-process Communication
* Paging and VM

« File System

* Networking

* Scheduling

Ultrix Kernel

(User Task)

Mach Tasks (Virtual Address Spaces)
Mach Threads (and Scheduting)
Mach Ports (Inter-process Communication and RPC)

Mach Kernel

Figure 1: Structure of Ultrix and Mach

This Figure shows differences in the structure of Ultrix and Mach. in

Ultrix, most system services reside in the kemel and are accessed through a system-call

interface. In Mach, much of the system code runs at the user level and interacts via Mach messages or RPCs. Each of the API servers depicted above (BSD,
MS-DOS, MacOS and VMS) exist in actual implementations [Black92, Malan91, Wiecek92], though not currently aff on the same processor architecture.

Operating Measurement Write

System Method CPI TLB l-cache D-cache Buffer Other
None pixie + cache2000 143 1001 (1%) | 006 (14%) | 0.05 (13%) | 0.18 (41%) | 0.14 (32%)
Ultrix Monster 1.66 0.01 (2%) | 0.10  (15%) | 0.26 (39%) | 0.14 (21 %) | 0.15  (23%)
Mach Monster 2.06 015  (14%) | 0.32 (30%) | 0.30 (28%) | 0.21 (20%) | 0.08 (8%)

Table 3: The Effect of Operating Systems on CPU Stall Behavior

This table shows three collections of CPU stall measurements for the mpeg_play workioad running on a DECstation 3100 with 64-Kbyte off-chip, direct-

mapped instruction and data caches and a 64-entry, fully-associative
contributions of different system components to CPI increases above

TLB. The cache line size is one word. The different columns show the total CP} and the
1.0 (this is a single-instruction issue machine}. Numbers in parenthesis give the relative

contribution of each stall type. Other stands for non-memory related stalls, such as integer and floating-point interiock cycles.

In the first row, CPi was determined by acache2000 simulation driven by pixie-generated traces [MIPS88]. cache2000 was configured to simulate a mem-

ory system with the same parameters as the DECstation 3100. Because pixie generates user-only

references, this measurement does not consider operating

system references. The last two rows give CPI under both Ultrix and Mach as measured by direct monitoring of the DECstation hardware, using Monster.

even higher CPI with a substantial increase in TLB and I-cache
misses.

Why do measurements of the same workload running on the
same hardware yield such different relative stall breakdowns? The
error in the first row is due to the omission of OS activity in the
simulation. The measurements are in error because only 40% of
the total workload activity is considered! and interference effects
between the different processes that participate in the workload
are not taken into account.

The difference between the last two measurements is not a
form of error; rather, it is due to differences in the structure of the
Ultrix and Mach operating systems. Consider Figure 2 which
illustrates the different ways that OS services are invoked under
Ultrix and Mach. The mpeg_play process reads a compressed
MPEG video stream from the file system, decompresses the
frames, and sends these individual frames to the X display server
to be viewed. File services are accessed through the BSD 4.3 file

1. For mpeg_play, the remaining 60% of workload time is spent in the
kemnel (25%), in the user-level BSD server (30%) and in the user-level
X display server (5%).
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system interface, while X display services are implemented
through the x1ib library which uses the BSD socket interface.

In Ultrix, the file system and socket interfaces are implemented in
the kernel, but in Mach they are implemented in the user-level
BSD server®. This results in a dramatically different execution
path for the invocation of OS services. In Ultrix, services are
invoked through a single kernel system call trap to the code that
performs the service (step (a) in Figure 2). The kernel returns by
copying results directly back into the user address space and
switching control from the kernel stack back to the user stack
(step (b)). In Mach, UNIX system call traps must be converted
into RPCs to the BSD server. This conversion is performed by an
emulation library that is dynamically mapped into the address
space of each UNIX process. The Mach kernel detects system
calls that require emulation (1) and bounces them back to the
emulation library (2) which marshals arguments into the form of
an RPC (3) and sends this message through the kernel to the BSD

2. The X11 windowing system has been rewritten to use Mach IPC and
VM sharing facilities instead of the BSD socket interface
[Ginsberg93].
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Figure 2: Service Invocation Paths in Ultrix and Mach

In Uttrix, BSD UNIX services reside in the kemel and are accessed throu

gh a single system call trap. In Mach, services reside in a user-level BSD server
accessed via a remote procedure call (RPC) mechanism that passes through the Mach kemel.

server (4) which unpacks the arguments using its own RPC stub
code. These steps (1-4) are equivalent to the single kernel trap (a)
in Ultrix. After the BSD server performs the service, the results
are sent in a reply message through the kernel (5) back to the emu-
lationlibrary (6) whichthenreturnstothe  mpeg_playcode. These
steps (5-7) are equivalent to step (b) in Ultrix.

4.1 Reasons for Increased I-cache Misses

The longer invocation path to services in Mach is largely
responsible for the relative increase in I-cache misses when com-
pared with Ultrix. Our measurements indicate that the round-trip
call and return path to services in Ultrix (steps (a) and (b) in Fig-
ure 2) is less than 100 instructions. In contrast, the call path (1-4)
under Mach consists of approximately 1000 instructions and the
return path (5-7) uses about 850 instructions. Note that these are
just service invocation paths. The actual OS code that provides the
service must still execute in both Ultrix and Mach, but differences
with respect to this service code are minor because both systems
are derived from the same 4.2 BSD code {Chen93]. Using the
instruction path lengths above, and assuming 4 bytes per instruc-
tion, we see that Mach increases the code path to OS services by
approximately 4 K-bytes of instruction memory and the return
path by about 3 K-bytes. These are long paths relative to the typi-
cal size of on-chip instruction caches in today’s MICTOProcessors.
For example, a single system call under Mach will completely
overrun a 4-Kbyte on-chip I-cache on the path to the BSD server,
which will then have to warm the I-cache to run well. The return
path overruns the I-cache as well, leaving the calling user task
with a cold I-cache. Our measurements show that roughly one
third of the time spent in the kernel during mpeg_play is due to
the send and receive messages that compose RPCs, so this case
happens frequently enough to have a substantial impact on overall
I-cache performance.

Other structural differences are responsible for increased
I-cache misses under Mach. For example, in Ultrix, paging is
implemented in the kernel, but Mach supports an external pager,
running in user mode, that is responsible for locating pages in a
backing store after a page fault {Draves91]. Similarly, recent ver-
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sions of Mach have migrated I/O device drivers from the kernel to
the user level [Forin91]. As a third example, Black et al. have
described efforts to further decompose monolithic API servers
(like the BSD server shown in Figure 2) into multiple, small-gran-
ularity servers (e.g., for naming, authentication, and file access)
[Black92]. Each of these restructuring trends spreads-out system
code and further increases instruction path lengths between soft-
ware modules.

4.2 Reasons for Increased TLB Misses

The increase in TLB misses is also related to structural differ-
ences between Mach and Ultrix. The migration of OS services
from kernel space (where they can run unmapped) to the user-
level (where they must run mapped) increases the overall number
of page table entries (PTEs) that must be held by the TLB and thus
increases the TLB miss ratio. Decomposing OS services so that
they reside in separate address spaces also increases the number
of page tables and thus the total number of kernel PTEs held by
the TLB. Mach’s aggressive use of virtual memory sharing is also
responsible for increased pressure on the TLB. These and other
explanations for increased TLB miss ratios under Mach are docu-
mented more completely in [Nagle93] and {Anderson91].

4.3 Common Trends

Table 4 and Figure 3 show that higher CPIs and the increased
reliance on the I-cache and TLB under Mach is common to all of
the workloads that we considered. Recent work by Chen and Ber-
shad corroborates this observation, although their data show a less
pronounced shift to TLB stalls {Chen93]. This discrepancy may
be due to differences between their workload suite and the bench-
marks considered in this study.

It should be noted that the long path to system services under
Mach is not a case of poor coding. This service invocation mecha-
nism is common to other modular, object-oriented software sys-
tems (e.g. [Khalidi92]) and simply represents a cost for the
advantages that they offer over traditional, single-service systems.




RN i

- DI
= S VNN S

Operating
Workload System CPI TLB l-cache D-cache Write Buffer Other
mpeg_play Ultrix 166 | 001 @%) | 010  (15%) | 026 (39%) | 0.14 (21%) | 0.15 (23%)
Mach 2.06 0.15  (14%) | 0.32 (30%) | 030 (28%) | 0.21 (20%) | 0.08 (8%)
mab Uitrix 188 | 002  (2%)| 018 (21%)| 038 (43%) | 026 (20%) | 0.04  (5%)
Mach 2.13 0.12 (11%) | 048 (42%) | 0.28 (25%) | 021 (19%) | 0.04 (4%)
ipeg_play Ultrix 1.31 0.00 (0%) | 0.02 (7%) | 013 (42%) | 0.08 (19%) | 0.10  (32%)
Mach 151 | 005 (10%) | 008 (16%) | 017 (33%) | 0.10 (19%) | 0.1 (22%)
ousterhout Ultrix 2.19 0.00 (0%) { 0.1 (8%) | 080 (67%) | 0.24 (20%) | 0.04 (3%)
Mach 2.26 021 (17%) | 044 (35%) | 0.27 (21%) § 031 (24%) | 0.03 (3%)
10zone Ultrix 209 | 001 (1%) | 010 (9%) | 071 (65%) | 0.18 (17%) | 0.09 (8%)
Mach 225 | 017  (14%) | 034 (27%) | 039 (31%) | 031 (25%) | 0.04 (3%)
video_play Ultrix 248 0.05 (8%) | 035 (24%) | 082 (56%) | 023 (15%) | 0.03 (2%}
Mach 251 028 (19%) | 049 (33%) | 0.43 (28%) | 0.27 (18%) | 0.04 (2%)
Averagse Ultrix 1.94 0.02 (2%) | 014 (15%) | 052 (55%) | 0.18 (19%) | 0.08 (9%)
Mach 2.12 016  (14%) | 0.36 (32%) | 0.31 (28%) | 023 (21%) | 0.06 (5%)
Table 4: CPI Stall Components for All Workloads Considered
In fact, the Mach implementation of RPC has been highly opti-
mized through the use of techniques such as stack-handoff sched-
uling and continuations {Draves91} for the common case of small
messages and out-of-line (virtual memory) transfers for the
expensive case of large messages [Dean91], [] 1B D-cache B Other

Bershad has suggested other ways to avoid the costs of RPC,
such as pre-allocating buffers between client and server address
spaces for small messages using virtual memory primitives, or
migrating more OS services into the client’s address space as is
currently done to a limited degree with the Mach emulation
library [Bershad92]. Avoiding RPCs through more aggressive vir-
tual memory sharing, however, is likely to shift misses from the
I-cache to the TLB.

Though they have their performance penalties, these OS struc-
turing approaches offer important advantages. Dynamically-
loaded emulation libraries enable binary compatibility.! External
pagers can simplify the implementation of distributed database or
network-shared-memory applications. User-level device drivers
are easier to debug, port and install, and small-granularity OS
servers enhance opportunities for code reuse.

44  Summary of Effects

In summary, the functional advantages of modular, object-ori-
ented software systems have been extensively documented in the
literature. They include enhanced code re-usability, increased
fault tolerance and ease of service distribution. We accept these
trends as given, but note that they shift utilization of hardware
components and thus prompt a re-evaluation of hardware architec-
tures. In particular, the importance of I-caches and TLBs seems to
increase relative to D-caches according to direct hardware mea-
surements of a machine that implements its caches off-chip. We
now shift our focus to the implementation of these memory struc-
tures on a microprocessor chip.

1. Ultrix executables need not be recompiled to run under Mach.
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Figure 3: Componen‘ts of CPI above 1.0
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Direct Mapped

64
Number of TLB Entries

Figure 4: Area Cost for TLBs of Different Sizes and
Associativities

This figure shows the size of various TLB configurations. Fully-associative
TLBs require significantly more area than set-associative TLBs. For large
TLBs, component sharing (sense amps, drivers, etc.) may actually make
some associative structures smaller in area than direct-mapped TLBs.

5 Cost and Benefit Analysis

5.1  Cost Analysis

To explore architectural trade-offs within the constraints of an
area budget, several cost models have been developed to estimate
the die area required for a given memory structure (e.g. register
file, cache, TLB, write buffer) [Mulder91, Hill84, Alpert88]. This
study uses the MQF model mentioned earlier [Muider91]. The
MQF model considers the memory cell type (dynamic or static),
tag and data bits, organization (fully-associative, set-associative
or direct-mapped), drivers and comparators to estimate die area
using a technology-independent unit, the register-bit equivalent!
(rbe). This section summarizes the costs of TLBs and caches as
predicted by the MFQ model using the default parameters defined
by the authors of the model.

Figure 4 graphs the area cost of TLBs with varying degrees of
size and associativity. For small, set-associative TLBs (< 64
entries, 1- to 8-way set-associative), increasing the degree of asso-
ciativity increases the relative die area required. A 16-entry, 8-way
set-associative TLB requires 3 times the area of a 16-entry, direct-
mapped TLB. For larger TLBs (> 64 entries), associativity has a
much smaller impact on die area. For example, with the largest
TLB size (512 entries), there is little difference in cost between a
direct-mapped TLB and an 8-way, set-associative TLB.

Cost trade-offs also exist between set-associative and fully-
associative TLBs (see Figure 5). Direct-mapped TLBs are always
smaller than fully-associative TLBs. However, for small TLBs
(< 64 entries), fully-associativity costs less than 4- or 8-way set-
associativity. For TLBs with 64 or more entries, the opposite is
true. In this range, a fully-associative TLB requires twice as much
area as a 4- or 8-way, set-associative TLB. For example, for
approximately the same cost, designers can choose either a 256-
entry, fully-associative TLB or a 512-entry, 8-way TLB.

1. The rbe is defined to be the area equal to a one-bit storage cell in a reg-
ister. For SRAMSs and DRAMs, the storage cell is usually a fraction of
an rbe.
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Figure 5: Area Cost of Set-associative TLBs Relative
to Fully-associative TLBs

This graph plots the cost of 1-, 4- and 8-way, set-associative TLBs relative
to the cost of fully-associative TLBs of the same size. For small TLBs, it is
cheaper to build a fully-associative TLB than to implement 4- or 8-way
associative TLBs. For larger TLBs, the trade-offs change; full associativity
can cost twice as much as set associativity.
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Figure 6: Area Cost for Caches of Different Capacity
and Line Size
This graph plots the cost of various caches with 1-, 2-, 4- and 8-word lines.

Larger line sizes reduce the cost by amortizing the cost of tag and status
bits over more data bits.

For larger memory structures, such as caches, there is a differ-
ent set of trade-offs. Figure 6 plots the relationship between area
cost and cache organization. Larger line sizes reduce the cost of a
cache by as much as 37% when moving from a 1-word line to an
8-word line size. Associativity (not pictured) has a much smaller
impact on die area.

In general, the MQF model gives a good approximation of the
total cost for a given memory structure. Mulder at al. compared
the model’s area predictions against 12 actual processor designs
and found typical errors of under 10% and a maximum error of
20.1%. The authors note several limitations of their model. First,
it does not consider the relationship between access time and area
cost. Second, optimal layout geometry for different memory sizes
cannot be completely modeled. Third, changing the aspect ratio
can cause the model to underestimate actual area costs. To achieve
a higher degree of accuracy, designers should use their own model
to determine cost trade-offs within their specific processor tech-
nology. For the purposes of this paper, the MQF model is accurate
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Figure 7: Total TLB Service Time vs. TLB size

This figure plots total TLB service time for fully-associative TLBs running
under Mach. The 256- and 512-entry TLBs remove almost all misses
except for compulsory misses. The “Other” category represents misses
due to page fauits and access protection violations.

enough to allow us to estimate first-order cost trade-offs in on-
chip memory allocation.

5.2 TLB Performance

As noted in Section 4.2, the TLB plays an important role in the
overall performance of multiple-API operating systems. To exam-
ine this issue, we used Tapeworm to explore the performance of
TLBs with various sizes and set-associativities. Figure 7 plots the
total TLB service time for various fully-associative TLB configu-
rations running our benchmark suite under Mach. A 64-entry,
fully-associative TLB (as implemented in the MIPS R2000)
requires over 46 seconds of service time. This time can be reduced
to approximately 10 seconds with a 256- or 512-entry TLB. There
is little to be gained beyond this size of TLB because the remain-
ing misses are due to page faults and other compulsory (cold-
start) misses.

Unfortunately, large fully-associative TLBs are difficult to
build and can have excessively long access times.! Therefore, we
examined the performance of various set-associative TLBs rela-
tive to a 256-entry, fully-associative TLB (Figure 8). For TLBs
with 64 or more entries, there is little difference in performance
between 2-, 4-, and 8-way set-associativity. More importantly, the
512-entry, set-associative TLBs will achieve about the same per-
formance as a 256-entry, fully-associative TLB with little area
penalty.

53 Cache Performance

As processor speeds continue to outstrip memory speeds, low
miss ratios for on-chip caches become more critical. However,
because of implementation constraints such as die size and access
time, most on-chip primary caches will remain relatively small
(< 64-Kbytes, see Table 1). In this section we search for cache

I. To our knowledge, the largest associative, on-chip microprocessor
TLB is in the HP 7100, This design has a 136 entry (120+16), fully-
associative TLB.
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Figure 8: Set-Associative TLB Performance Relative
to Fully-Associative TLBs

Performance of set-associative TLBs relative to a 2 , fullty-associa-
tive TLB (represented as the straight line at 1), Direct-mapped TLBs exnbit
very poor performancs and are therefore not considered In this piot. Thase
results are for the video_play benchmark running under Mach.

organizations that deliver the most performance for the least cost
when supporting a multiple-API operating system like Mach. We
report cache performance for our entire benchmark suite under
botthltrix and Mach in terms of miss ratios and contribution to
CPL

The top left graph in Figure 9 shows that under Ultrix. small
on-chip I-caches have fairly low miss ratios. For exampie. the
miss ratio for an 8K-byte I-cache with a d-word (16-byte) line is

034

25
025 Ultrix o] B K - _
<
024 -6 WK - XX
j 15
0184 L

1 O T 1 2 ¢ 1 % =
Une Size (Words) Line Size (Woromi
034 284
0289 2
0z Mach .
j 15+
015 E 1 £
1 ~
oz °"\'\Q’~—*;__;,//
[] T T T T 0- T T T
1 2 4 s w 2 1 2 4 [ ] - =2
Line Size (Wor)

Figure 9: Instruction Cache Performance

This figure plots average |-cache miss ratios and I-cache contribution o
CP! for the entire benchmark sulte for varlous direct-mapped i-cache orga-
nizations. Notice that cache pollution due to large line sizes is more of an
Issue for Uttrix than for Mach.

2. The cache contribution to CPI was determined by estimating a prmary
cachemisspenaltyof6cycles for the first word in a line and 1 ook
for each additional word.
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Figure 10: Performance of Set-Associative Instruction

Caches

These plots show increased I-cache performance for various cache sizes
and associativities. The line size for both graphs was fixed at 4 words.
increased associativity benefits Mach more than Ultrix over a broader range
of cache configurations. The CPI graphs plot the I-cache’s contribution to
CPL

0.028 and a 32K-byte I-cache with a 4-word line size has a miss
ratio of 0.013. Note that cache pollution due to large line sizes is
an issue when Ultrix runs with small caches.

The bottom left graph in Figure 9 shows that Mach generally
exhibits higher I-cache miss ratios than Ultrix. For example, an
8K-byte, 4-word-line I-cache configuration under Mach has a
miss ratio of 0.065, which is more than double that of Ultrix. The
plot indicates that I-cache performance under Mach improves in
larger increments (relative to Ultrix) as line size is increased. Fur-
ther, cache pollution does not occur even for the largest line sizes
of 32 words. This suggests that large I-cache line sizes are an
effective means for lowering miss ratios under Mach. In fact, dou-
bling the line size is more effective in reducing the miss ratio than
doubling the cache size. To see why this is so, recall that Mach has
a long instruction path to its user-level API servers (Section 4.1).
The instructions along this path typically execute only once per
invocation of an OS service and have a high probability of being
displaced in a small cache before they are used again. Because of
this, large line sizes are effective in reducing the average cost to
load these instructions into the cache for each use. However, as
shown in the CPI plots of Figure 9, the degree to which large line
sizes can be used without increasing overall CPI is limited due to
the additional cycles required to load a large line. For the miss
penalties that we selected, I-cache line sizes of 16 words mark an
upturn in the CPI plot.

Mach also experiences greater benefits from increased I-cache
associativity than does Ultrix. The left side of Figure 10 shows
that Ultrix exhibits the largest reductions in miss ratio for smail
caches and primarily when moving from a direct-mapped to a 2-
way set-associative I-cache. On the other hand, increased associa-
tivity yields benefits over a broader range of cache configurations
under Mach. For Mach, highly-associative I-caches can reduce the
miss ratio, but cannot completely overcome the problems created
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by Mach’s long code paths. An 8-way, 4K-byte I-cache still has a
miss ratio of over 0.03.

For small caches, Mach’s D-cache miss ratios are also higher
than those of Ultrix (not shown). However, unlike the I-cache
where longer line sizes and associativity significantly improved
miss ratios, D-caches see a more modest improvement. Further, in
contrast with I-caches, line sizes greater than 8 words begin to
resuit in D-cache pollution under both operating systems. For our
miss penalties, D-cache line sizes above 4 words begin to increase
CPL

54 Performance-driven Area Allocation

Section 5.2 and Section 5.3 showed that TLBs and I-caches are
crucial to Mach’s performance. Hypothetically, the performance
problem could be overcome by building larger I-caches and TLBs.
However, cost constraints limit the amount of chip area that can
be dedicated to these structures. Therefore, designers must make
careful trade-offs between TLB, I-cache and D-cache capacity,
line sizes and associativity in order to optimize the performance
under the constraints of limited on-chip memory budgets.

To determine which on-chip memory system configurations
have the best performance within the constraints of a fixed, on-
chip memory budget, we performed a cost/benefit analysis by
combining the cost estimates from the MQF model with our TLB
and cache performance data.

We selected a maximum die-area budget by examining various
current generation microprocessors (Table 1). The data show that
most TLBs are between 32 and 96 entries (fully-associative) while
on-chip caches do not exceed 32K Bytes (for both instruction and
data). The MQF model predicts that the total of these memory
structures should cost less than 250,000 rbes. This relatively small
amount of on-chip memory reflects technology constraints that
will continue for the next several years [MReport93]. High-end
systems will provide more on-chip memory, but access times will
probably require that this be in a second-level cache. Moreover,
trends towards inexpensive, scaled-back processors such as the
MIPS R4200 and the DEC 21064 will keep many processor’s on-
chip primary caches small.

To illustrate our optimization process, we need CPI values
rather than miss ratios or service times. Therefore, we assumed
TLB miss penalties to be the same as with an R2000 processor.
Because this is a software-managed TLB, miss penalties range
from about 20 cycles for misses on user pages to over 400 cycles
for kernel-space misses. As noted previously, cache miss penalties

Total
Storage Degree of Line Size
Capacity Associativity (words)
TLB 64 entries 1-, 2-, 4-, B-way
up to 512 and fully-associative
entries {up to 64 entries)
I- and 2K-bytes to 1-, 2-, 4-, and 8-way 1,2,4,8,16,32
D-cache 32K-bytes

Table 5: TLB and Cache Configurations Considered

The size for each possible TLB and cache configuration was computed
using the MQF model. Combinations of |-cache, D-cache and TLB config-
urations that required fewer than 250,000 total rbes represent feasible
allocations of on-chip memory that fit within the design budget.



TLB l-cache D-cache Total Cost | Total
(size, assoc) (size, line, assoc) (size, line, assoc) {rbes) CPI1
512 8-way 16-KB 8word 8-way | 8-KB 8-word  8-way 163,438 1.333
512 4-way 16-KB 8-word 8-way | 8-KB 8-word  8-way 162,497 1.334
512 2-way 16-KB 8-word....-8-way-|{-8-KB 8-word - 8-way 162,579 1.335
512 8-way 32-KB  16-word 8-way | 8-KB 8-word  8-way 249,089 1.335
512 4-way 32-KB 16-word 8-way | 8-KB 8-word  8-way 248,148 1.336
512 8-way 32-KB 8-word 4-way | 8-KB 8-word  8-way 243,502 1.336
512 2-way 32-KB  16-word 8-way | 8-KB 8word 8-way 248,230 1.337
512 4-way 32-KB 8word 4-way | 8-KB 8-word  8-way 242,561 1.337
512 2-way 32-KB 8word 4-way | 8-KB 8-word  8-way 242,643 1.338
512 8-way 16-KB  16-word 8-way | 8-KB 8-word  8-way 167,815 1.339

Table 6: The Ten Best Area Allocations

The ten best allocations of die area given a budget of 250,000 rbes. Note that the CP!I of these configurations only differ in the third decimal place,
making them essentially equivalent in terms of experimental uncertainty.

were estimated to be 6 cycles for the first word in a line and 1
cycle for each additional word. Of course, different miss penalties
will lead to different optimal configurations.

With 250,000 rbe’s as our maximum amount of die area for on-
chip memory structures, we used the MQF model to determine
which combinations of TLB and cache configurations would fit
on-chip. The configurations explored are listed in Table 5. Next,
we used our TLB measurements and cache miss ratios from Mach
to compute the contribution to CPI for each configuration, and
then sorted the possible combinations by total CPL The resulting
list was very large.

Table 6 lists the 10 configurations with the lowest total CPI
under Mach. All of the best configurations include a 512-entry
TLB. This is due to two factors. First, large TLBs substantially
reduce the TLBs contribution to CPI. Second, large TLBs do not
cost very much relative to on-chip caches. For example, a 512-
entry, 8-way set-associative TLB costs just 19,000 rbes while an
8K-byte, direct-mapped, 4-word-line cache costs over 74,000
rbes. Providing a large, set-associative TLB improves perfor-
mance without significantly adding to total die size.

With respect to caches, the top allocation increases the I-cache
size at the expense of the D-cache. Further, this allocation actually
requires only 163,438 rbe’s, 35% less than the maximum number
of rbe’s and has only 16-Kbytes of I-cache. Costlier configura-
tions, like row four, supply more I-cache capacity, but their line
size/associativity trade-offs lower the system’s overall perfor-
mance.

Most of the best performing configurations include a signifi-
cant amount of cache associativity. However, access-time require-
ments may prohibit 4- or 8-way set-associative caches. Therefore,
we computed another table by restricting cache configurations to
set-associativities of 1 or 2. Table 7 shows that this restriction
increases the best possible CPI to 1.428. Again, in these configu-
rations, TLBs are large and I-caches are typically 2 to 4 times big-
ger than D-caches.

6 Conclusions and Future Work

OS trends are shifting the way that components of .existing
computer architectures are utilized. In particular, multiple-API
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operating systems require more TLB and I-cache support than sin-
gle-API operating systems. At the same time, IC process limita-
tions and cycle-time goals are forcing on-chip microprocessor
memories to fit into tight design constraints. This paper focused
on the particular problem of optimizing the performance of a mul-
tiple-API operating system (Mach 3.0) under die-area constraints.
Because die yield (and hence manufacturing cost) is related to
(die area)3, die area is an important constraint.

Our cost/benefit analysis found a number of die-area alloca-
tions that provide good support for Mach while staying within a
given area budget. In general, the best configurations include
large, set-associative TLBs because they eliminate a substantial
component of CPI for relatively little cost. Good configurations
also tend to make the I-cache 2 to 4 times larger than the D-cache.
Further, large I-cache line sizes were found to be very effective in
reducing both CPI and die area without leading to cache pollution
under Mach. If timing constraints allow, larger cache associativi-
ties can be effective in reducing CPI under Mach, but are less
effective under Ultrix.

Designers who perform this style of cost/benefit analysis and
consider their own technology will probably find slightly different
optimal points. Different workloads and less emphasis on the
operating system are also likely to lead to other optimal confi gura-
tions. However, if the trend to multiple-API systems continues,
the importance of careful on-chip TLB and I-cache design will
persist.

This work could be extended in two ways. First, we did not
consider the impact of size and associativity on memory access
times in a rigorous fashion. An accurate access-time model, such
as that developed by Wada et al., could be used to add another
dimension to this style of cost/benefit analysis [Wada92]. Second,
we only considered the I-cache, D-cache and TLB in die area allo-
cations. A more ambitious study could model the die-area cost and
performance benefits of other architectural structures, such as
write buffers, pre-fetching units, streaming buffers, branch-pre-
diction units and floating-point units to see if, or to what extent

they should be allocated space under a given microprocessor die
budget.



TLB Il-cache D-cache Total Cost
Rank (size, assoc) (size, line, assoc) (size, line, assoc) (rbes) Total CPI
1 512  8.way 32-KB 8-word  2-way 8KB 4word 2-way 239,259 1.428
5 512 8-way 32KB 4-word  2-way 8KB 8word  2-way 248,628 1,447
13 512 8-way 32KB 16-word  2-way 8KB 8word 2-way 232,040 1.462
21 512 8-way 32KB 16-word  2-way 8KB 2word 2-way 241,256 1.473
24 512 8-way 32-KB 4word  2-way 4KB 4-word  2-way 228,214 1.475
27 256  8-way 32KB 4-word  2-way 8KB 2word - 2-way 249,684 1477
59 64 Fuil 32-KB  8word  2-way 8KB 4-word  2-way 225,438 1.497
61 128 8-way 32-KB  8-word 2-way 8-KB  4-word 2-way 226,971 1.498
73 512 8-way 32KB 16-word  2-way 8KB 16word  2-way 232,117 1.503
77 512 8-way 16-KB 8word 2way | 16-KB 2word  2-way 212,442 1.504
92 512 8-way 16-KB 4word 2way | 16-KB 2word 2-way 219,138 151
99 512 8-way 16-KB  8word  2-way 8KB 8word  2-way 151,875 1.512
113 84 Full 32KB 4-word  2-way 8KB 8word 2-way 234,807 1.516
1529 64 4-way 8KB tword tway | 16KB 2word  1-way 176,909 2529

Table 7: Configurations that Cost Under 250,000 rbes

Memory configurations restricted to caches that are 1- or 2-way set associative. This list represents some of the first 113 best configurations and one of the
poorer performing configurations (#1529). Configurations with similar features were removed from the list.
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